Fe-MCM-41 for N*2*O Decomposition and Reduction with Methane

Yan Tian,¹ Erika Ogawa,¹ Akira Ikuo,¹ Tetsuya Shishido,^{*1} Quinghong Zhang,² Ye Wang,²

Katsuomi Takehira, 3 and Sadao Hasegawa¹

¹Department of Chemistry, Tokyo Gakugei University, 4-1-1 Nukui-kita, Koganei, Tokyo 184-8501

²State Key Laboratory for Physical Chemistry of Solid Surfaces, Department of Chemistry, Xiamen University,

Xiamen 361005, P. R. China

 3 Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-hiroshima 739-8527

(Received January 25, 2006; CL-060109; E-mail: stetsuya@u-gakugei.ac.jp)

The catalytic activities for N_2O decomposition and selective reduction with methane were studied on Fe-MCM-41 prepared by direct hydrothermal synthesis (DHT) and template ion exchange (TIE) methods. Fe-MCM-41-DHT showed higher activity than those prepared by TIE and impregnation methods. The high activity of Fe-MCM-41-DHT is caused by the formation of highly isolated and tetrahedrally coordinated iron-oxo species.

Nitrous oxide (N_2O) is a strong greenhouse-effect gas with a global warming potential (GWP) per molecule of about 300 times stronger than that of carbon dioxide, and it also affect the destruction of the stratospheric ozone layer.¹ For the catalytic removal of N_2O , decomposition and selective reduction (SCR) with reductants have been proposed as effective methods. Many iron-containing catalysts such as ferrisilicate, Fe-ZSM-5, Fe- β , Fe/Al_2O_3 , etc. have been reported to catalyze both N₂O decomposition and SCR.²⁻⁴ Particularly, numerous investigations have focused on Fe ion-exchanged zeolites since the first report of Segawa et al. on the high performance of Fe-ZSM-5 for N_2O SCR with C_3H_6 in the presence of H_2O and O_2 .^{5,6} Many researchers have pointed out that Fe binuclear species are active sites for N₂O decomposition and SCR.^{2,3,7–9} On the other hand, mononuclear iron-oxo species have been also proposed as active sites for N_2O SCR.^{5,6,10} Shimokawabe et al. reported that tetrahedrally coordinated Fe^{3+} in ion-exchanged Fe-ZSM-5 showed higher activity in N₂O SCR than small $Fe₂O₃$ cluster in ZSM-5 prepared by impregnation method.¹¹ Moreover, Joyner and Stockenhuber reported that Fe in Fe/ZSM-5 prepared with different ion-exchange methods was stabilized in different forms, ranging from isolated metal ions to large oxide clusters.¹² They concluded that iron-oxo nanoclusters are most active in the NO*^x* SCR. Thus, the coordination environments of active iron species for the removal of $N₂O$ are still under discussion. Metal ioncontaining mesoporous silicates such as M41S and SBA-15, which possess uniform nano-order mesopores and high concentration of isolated active sites, has attracted much attention as a new type of catalyst. In order to introduce active metal centers to mesoporous silicates, several kinds of methods such as direct hydrothermal, impregnation, grafting, template ion exchange methods,¹³ etc. have been proposed. It can be expected that the metal cations with different environments would result in various catalytic properties. Indeed, we recently reported that Fe-MCM-41 prepared by the DHT method is more active than those prepared by TIE and impregnation methods for the epoxidation of styrene with H_2O_2 .¹⁴ In the present report, we introduce iron species into MCM-41 by DHT and TIE methods. The catalytic performances of Fe-MCM-41 thus prepared were tested in N₂O decomposition and SCR with CH₄ and the effects of the coordination environments of iron-oxo species on the catalytic performance are discussed.

Fe-MCM-41 catalysts were prepared by DHT and TIE methods according to the previous report.¹⁴ Fe₂O₃/Cab–O–Sil catalyst was also prepared by impregnation method. Cab–O– Sil (Acros Organics Co.) is $SiO₂$, which has no pore structure. The content of iron in each sample was determined by ICP. The catalytic test was carried out using fixed-bed flow reactor. The products were analyzed by on-line TCD gas chromatographs.

Figure 1 represents the temperature dependence of N_2O conversion in the decomposition (A) and SCR with CH₄ under an excess of oxygen (B), respectively. N_2 , CO_2 , and trace amount of CO were detected in N_2O reduction with CH₄. BET surface area, iron content, and TOF values for N_2O decomposition and SCR are shown in Table 1. Although both reactions proceeded over iron-free MCM-41 and Cab–O–Sil above 973 K (not shown), the addition of iron caused an enhancement of N_2O con-

Figure 1. Catalytic decomposition of N_2O (A) and selective reduction of N_2O with methane under an excess of oxygen (B), Decomposition: N₂O 1250 ppm, He balance, $W/F = 0.1$ g s mL⁻¹, SCR with CH₄: N₂O 1250 ppm, CH₄ 1250 ppm, O₂ 2 vol %, He balance, $W/F = 0.1$ g s mL⁻¹; (\bullet) Fe-MCM-41-DHT, (\triangle) Fe-MCM-41-TIE, (\blacklozenge) Fe₂O₃/Cab-O-Sil.

Table 1. Properties and TOF values of iron containing catalysts

Catalysts	Fe content	Si/Fe	S_{BET} $\rm /m^2 \, g^{-1}$	$TOF / \times 10^4$ s ^{-1b}	
	/wt $\%$ ^a			Decomp.	SCR
DHT	1.69	54	1020	6.7	6.2
TIE	1.37	67	738	2.8	1.3
$Fe2O3/Cab-O-Sil$	1.55	59	198	1.5	0.0
$MCM-41$			1048		

^aDetermined by ICP analysis. ^bReaction temp.; Decomposition: 773 K, SCR with CH4: 723 K.

version at low temperatures. Among the catalyst tested, Fe-MCM-41-DHT clearly showed the highest N_2O conversion in both reactions over the temperature range of 673 to 1073 K. Fe₂O₃/Cab–O–Sil showed the lowest N₂O conversion in both reactions. In the case of SCR under excess of oxygen over $Fe₂O₃/Cab-O-Sil$, CH₄ conversion was much higher than N_2O conversion, indicating that combustion of CH_4 prominently proceeded. TOF values for N2O decomposition at 773 K and SCR with CH₄ at 723 K over Fe-MCM-41-DHT were 6.7 \times 10^{-4} and 6.2×10^{-4} s⁻¹ and these values are ca. 2.4 and 4.8 times larger than those over Fe-MCM-41-TIE, respectively. These results strongly suggest that the coordination environment of iron was crucial for both N_2O decomposition and SCR with methane. The XRD patterns showed that the Fe-MCM-41- DHT and TIE had hexagonal regularity and their pore diameters determined by N_2 adsorption were around 2.7 nm. Both Fe-MCM-41-DHT and TIE preserved this hexagonal regularity even after the reaction at 1073 K. Figure 2 shows the diffuse reflectance UV–vis spectra of Fe-MCM-41 along with $Fe₂O₃$ / Cab–O–Sil. In the case of Fe-MCM-41-DHT, a sharp peak at 265 nm was obtained. This band was similar to that for ferrisilicate containing tetrahedrally coordinated iron species and could be assigned to the $d\pi$ -p π charge transfer between the Fe and O atoms in the framework of Fe–O–Si in the zeolite.¹⁵ On the contrary, in the cases of Fe-MCM-41-TIE and $Fe₂O₃/Cab-O-Sil$, bands at ca. 385 and 510 nm were mainly observed. α -Fe₂O₃ also shows these bands⁴ suggesting the formation of $Fe₂O₃$ cluster over Fe-MCM-41-TIE and $Fe₂O₃/Cab-O-Sil$. The pre-peak intensity in XANES spectrum of the Fe-MCM-41-DHT was almost similar to that of ferrisilicate, whereas higher than those of Fe-MCM-41-TIE and α -Fe₂O₃. This result suggests that the iron species in Fe- MCM-41-DHT and TIE exist in tetrahedrally

Figure 2. UV–vis spectra of iron-containing catalysts, iron-free MCM-41 and Cab–O–Sil. (a) Fe-MCM-41-DHT, (b) Fe-MCM-41- TIE, (c) $Fe₂O₃/Cab-O-Sil$, (d) MCM-41, and (e) Cab–O–Sil.

Table 2. Curve-fitting analysis of Fe-MCM-41 and reference compounds

Samples	Scatter	$C.N.^a$	R/\AA^b	$DW/\times 10^3 \text{ Å}^{2}$ ^c
Ferrisilicate	0	3.9	1.85	-0.71
DHT		4.2	1.85	0.73
TIE		3.2	1.85	-0.73
	O	3.2	1.99	-0.86
	Fe	2.1	3.06	8.93
α -Fe ₂ O ₃		3.0	1.91	0.70
		2.9	2.04	2.30

^aC.N.: coordination number, ^bR: distance, ^cThe difference between the Debye–Waller factors of the samples and reference compounds.

and octahedrally coordinated environments, respectively. The curve-fitting analysis of Fe K-edge EXAFS are summarized in Table 2. As for the Fe-MCM-41-DHT, the incorporation of the majority of Fe^{3+} into the framework of MCM-41 with a tetrahedral coordination structure is inferred, since both the Fe–O distance (1.85 Å) and the coordination number (4.2) of Fe-MCM-41 were similar to those of the ferrisilicate.¹⁶ On the other hand, two kinds of Fe–O shells with the coordination numbers of 3.2 and 3.2, respectively, were obtained in Fe-MCM-41-TIE. The iron in α -Fe₂O₃ possessed two kinds of Fe–O shells with the coordination numbers of 3.0 and 2.9, respectively. The coordination number of Fe–Fe shell in Fe-MCM-41-TIE (2.1) was much smaller than that in α -Fe₂O₃ (7.0).¹⁷ These results suggest that iron in Fe-MCM-41-DHT is highly dispersed and mainly incorporated into the framework of MCM-41. On the other hand, Fe-MCM-41-TIE mainly contains iron oxide clusters, which have octahedrally coordinated Fe species. $Fe₂O₃/Cab-O-Sil$, which was prepared by impregnation method, also contains iron oxide clusters. Therefore, the tetrahedrally coordinated iron-oxo species in Fe-MCM-41-DHT showed high activity in both N_2O decomposition and reduction with methane, whereas the iron oxide clusters in Fe-MCM-41-TIE showed low activity. Moreover, the Fe-MCM-41-DHT showed no decreasing in the activity for N_2O reduction by methane under an excess of oxygen during the reaction for 24 h, suggesting that the tetrahedrally coordinated iron-oxo species in MCM-41 has high stability.

References

- 1 H. Rodhe, *Science* **1999**, 248, 1217.
2 M. Yoshida, T. Nobukawa, S. Ito, K.
- 2 M. Yoshida, T. Nobukawa, S. Ito, K. Tomishige, K. Kunimori, J. Catal. 2004, 223, 454.
- 3 S. Kameoka, T. Nobukawa, S. Tanaka, S. Ito, K. Tomishige, K. Kunimori, Phys. Chem. Chem. Phys. 2003, 5, 3328.
- 4 M. Haneda, M. Shinriki, Y. Nagao, Y. Kintaichi, H. Hamada, Bull. Chem. Soc. Jpn. 2003, 76, 2329.
- 5 C. Pophal, T. Yogo, K. Tanabe, K. Segawa, Catal. Lett. 1997, 44, 271.
- 6 K. Yamada, S. Kondo, K. Segawa, Microporous Mesoporous Mater. 2000, 35–36, 227.
- 7 A. A. Battiston, J. H. Bitter, F. M. F. de Groot, A. R. Overweg, O. Stephan, J. A. van Bokhoven, P. J. Kooyan, C. van der Spek. G. Vanko, D. C. Koningsberger, J. Catal. 2003, 213, 251.
- 8 P. Marturano, L. Drozdová, A. Kogelbauer, R. Prins, J. Catal. 2000, 192, 236.
- 9 El-M. El-Malki, R. A. van Santen, W. M. H. Sachtler, J. Catal. 2000, 196, 212.
- 10 G. Delahay, M. Mauvezin, B. Coq, S. Kieger, J. Catal. 2001, 202, 156.
- 11 M. Shimokawabe, T. Chaki, S. Ozawa, M. Arai, React. Kinet. Catal. Lett. 2005, 86, 363.
- 12 R. Joyner, M. Stockenhuber, J. Phys. Chem. B 1999, 103, 5963.
13 M. Yonemitsu, Y. Tanaka, M. Iwamoto, J. Catal, 1998, 178, 20
- M. Yonemitsu, Y. Tanaka, M. Iwamoto, J. Catal. 1998, 178, 207.
- 14 Q. Zhang, Y. Wang, S. Itsuki, T. Shishido, K. Takehira, Chem. Lett. 2001, 946. 15 B. Echchahed, A. Moen, D. Nicholson, L. Bonneviot, Chem. Mater. 1997, 9, 1716.
- 16 F. Ray, G. Sanker, T. Maschmeyer, J. M. Thomas, R. G. Bell, Top. Catal. 1996, 3, 121.
- 17 S. Wong, J. Lee, S. Chemg, C. Mou, Appl. Catal., A 2000, 198, 115.